If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+120x-1600=0
a = 10; b = 120; c = -1600;
Δ = b2-4ac
Δ = 1202-4·10·(-1600)
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{78400}=280$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-280}{2*10}=\frac{-400}{20} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+280}{2*10}=\frac{160}{20} =8 $
| 3(x-4/3)=3x+8 | | 1/3(6x-5)-x=-1/3-2(x+1) | | 2(v-4)=5v-5 | | -7u+17=5(u+1) | | 8(y+1)=3y-17 | | n+11=3(14÷2) | | 0=m+1-2 | | 9n+(5÷5)=1 | | -4(v+14)=0 | | 1x-0.5x=0 | | 3=(-5g)-4 | | 3=(-4g)-5 | | 71.40=3.9g+44.1 | | 2-2e=0 | | 44=17+-9m | | 100=a+61 | | 7=27-4y | | 23-4r=19 | | 10x+23(x-4)=304 | | q-29=46 | | 5(u-7)-8=-29 | | 50=22c | | 18÷4-2x÷4=8 | | 9q-21=6 | | 18-2x÷4=8 | | 9q−21=6 | | 2(y+2)-7y=34 | | x2+11x+61=−4x+5 | | 600=(32+25)/2x | | (2x−3)2=81 | | 6=-2c+20 | | 1/4(8x+4)-17=1/2(4x-8) |